U-Substitution

1. Determine if U-Substitution is appropriate.
a. Do you see a function inside of another function?
b. Is there a function being divided by another function?

These aren't the only rules of thumb, but these are good indicators
2. Find your $u=g(x)$
a. Try using the inside function first or if you can't see what to use, start simple (just don't use $u=x$) and work up in complexity
b. Substitute $u=g(x)$ into the integral and see what is left
i. Do you think the parts remaining could be found by taking the derivative of $u=g(x)$?
ii. If you don't think you will get the remaining parts by taking the derivative, increase the complexity of $\boldsymbol{u}=\boldsymbol{g}(\boldsymbol{x})$ and try again
3. Differentiate u with respects to x
a. You will get something like $\frac{d u}{d x}=s t u f f$
b. Determine what you want to see on one side of this $\frac{d u}{d x}=s t u f f$
i. Take the original integral
ii. Substitute $u=g(x)$ into it
iii. Take all of the remaining parts with $x^{\prime} s$
iv. These remaining x parts is what you want to get on one side of the equation from $\frac{d u}{d x}=s t u f f$
v. After you get all of these parts on one side of the equation you should have no x^{\prime} ' on the other side. If you do, you will need to choose anther $u=g(x)$
vi. If you can't get all of the parts to one side and you are stuck having $x^{\prime} s$ on both sides, you will need to choose anther $\boldsymbol{u}=\boldsymbol{g}(\boldsymbol{x})$
4. Substitute your $u=g(x)$ and the parts from $\frac{d u}{d x}=$ stuff
a. Do you only have $u^{\prime} s$ in the equation? If yes, integrate, if not you will need to choose another $\boldsymbol{u}=\boldsymbol{g}(\boldsymbol{x})$
5. Integrate the integral that should only have u 's
6. Substitute $u=g(x)$

Two Options for Definite Integrals
6. Substitute $u=g(x)$
7. Take $F(a)-F(b)$
6. Convert a and b by taking $g(a)=u_{a}$ and $g(b)=u_{b}$
7. Without substituting $u=g(x)$ Take $F\left(u_{a}\right)-F\left(u_{b}\right)$

Integration by Parts

1. Determine if integration by parts is appropriate.
a. Do you see a function being multiplied by another function?
b. Does u-substitution look like it won't work?
i. If you choose a function "inside" another function and take its derivative will there be more x^{\prime} s left in the equation
2. Find the functions $f(x)$ and $g^{\prime}(x)$ being multiplied together
a. Make $f(x)$ easy to derive
b. Make $g^{\prime}(x)$ easy to integrate
i. If both functions are easy to integrate choose the one that produces the easiest integral to work with
3. Set, $u=f(x)$ and $\frac{d v}{d x}=g^{\prime}(x)$
4. Create the integration matrix
a. Rewrite $\frac{d v}{d x}=g^{\prime}(x)$ such that we have $d v=g^{\prime}(x) d x$ (now we can take its integral)

$$
\begin{aligned}
u=f(x) & \Rightarrow \\
& \Leftarrow d v=g^{\prime}(x) d x
\end{aligned}
$$

5. Derive $u=f(x)$ and integrate $d v=g^{\prime}(x) d x$
a. Rewrite $\frac{d u}{d x}=f^{\prime}(x)$ as $d u=f^{\prime}(x) d x$

$$
\begin{aligned}
& u=f(x) \Rightarrow d u=f^{\prime}(x) d x \\
& v=g(x) \Leftarrow d v=g^{\prime}(x) d x
\end{aligned}
$$

6. Substitute $u, d u, v$, and, $d v$ into our given equation

$$
\int u d v=u \cdot v-\int v d u
$$

7. Integrate the easy integral

$$
\int v d u
$$

8. Combine all elements into one final equation (no need to simplify) +C

$$
\int f(x) \cdot g^{\prime}(x) d x=f(x) \cdot g(x)-\int g(x) \cdot f^{\prime}(x) d x+c
$$

9. Definite integral

$$
\int_{a}^{b} u d v=\left.u \cdot v\right|_{a} ^{b}-\int_{a}^{b} v d u
$$

